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Abstract. Co-located measurements of fine particulate mat-

ter (PM2.5) organic carbon (OC), elemental carbon, radio-

carbon (14C), speciated volatile organic compounds (VOCs),

and OH radicals during the CalNex field campaign pro-

vide a unique opportunity to evaluate the Community Multi-

scale Air Quality (CMAQ) model’s representation of organic

species from VOCs to particles. Episode average daily 23 h

average 14C analysis indicates PM2.5 carbon at Pasadena and

Bakersfield during the CalNex field campaign was evenly

split between contemporary and fossil origins. CMAQ pre-

dicts a higher contemporary carbon fraction than indicated by

the 14C analysis at both locations. The model underestimates

measured PM2.5 organic carbon at both sites with very little

(7 % in Pasadena) of the modeled mass represented by sec-

ondary production, which contrasts with the ambient-based

SOC / OC fraction of 63 % at Pasadena.

Measurements and predictions of gas-phase anthropogenic

species, such as toluene and xylenes, are generally within

a factor of 2, but the corresponding SOC tracer (2,3-

dihydroxy-4-oxo-pentanoic acid) is systematically underpre-

dicted by more than a factor of 2. Monoterpene VOCs and

SOCs are underestimated at both sites. Isoprene is under-

estimated at Pasadena and overpredicted at Bakersfield and

isoprene SOC mass is underestimated at both sites. System-

atic model underestimates in SOC mass coupled with rea-

sonable skill (typically within a factor of 2) in predicting

hydroxyl radical and VOC gas-phase precursors suggest er-

ror(s) in the parameterization of semivolatile gases to form

SOC. Yield values (α) applied to semivolatile partitioning

species were increased by a factor of 4 in CMAQ for a sen-

sitivity simulation, taking into account recent findings of un-

derestimated yields in chamber experiments due to gas wall

losses. This sensitivity resulted in improved model perfor-
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mance for PM2.5 organic carbon at both field study locations

and at routine monitor network sites in California. Modeled

percent secondary contribution (22 % at Pasadena) becomes

closer to ambient-based estimates but still contains a higher

primary fraction than observed.

1 Introduction

Secondary organic aerosol (SOA) forms in the atmosphere

during the gas-phase photooxidation of volatile organic com-

pounds (VOCs) that produce semivolatile and water-soluble

gases that condense to form new particles or partition to pre-

existing aerosol mass (Ervens et al., 2011). SOA contributes

to the atmospheric fine particulate matter (PM2.5) burden,

with subsequent effects on air quality, visibility, and climate

(Hallquist et al., 2009). Despite its importance and abun-

dance, ambient SOA mass is not well characterized by at-

mospheric models (Wagstrom et al., 2014). For example, the

Community Multiscale Air Quality (CMAQ) model consis-

tently underpredicts surface SOA mass concentrations for a

variety of seasons and locations when compared to ambient

observational estimates (Carlton and Baker, 2011; Carlton et

al., 2010; Hayes et al., 2014; Zhang et al., 2014a).

SOA formation and the preceding gas-phase photooxi-

dation chemistry are complex and often involve multiple

oxidation steps in the gas, aqueous, and particle phase as

well as accretion reactions in the particle phase that yield

high molecular weight products. However, three-dimensional

photochemical models must represent the gas-phase chem-

istry and SOA formation in a simplified fashion for compu-

tational efficiency (Barsanti et al., 2013). Gas-phase chem-

ical mechanisms employ “lumped” VOC species, catego-

rized primarily according to reactivity (e.g., reaction rate

constants with the OH radical) (Carter, 2000; Yarwood et al.,

2005), not product volatility or solubility. Condensable SOA-

forming oxidation products are typically represented with

two products in the standard versions of publically available

and routinely applied photochemical modeling systems such

as GEOS-CHEM (Chung and Seinfeld, 2002; Henze and Se-

infeld, 2006) and WRF-CHEM (Grell et al., 2005) and those

employed in regulatory applications for rule making such as

CMAQ (Carlton et al., 2010) and the Comprehensive Air

Quality Model with extensions (CAMx) (ENVIRON, 2014).

Given the relationships between precursor VOC, OH radical

abundance, and SOA formation, it is important to simulta-

neously evaluate the model representation of all three within

the context of how organic species evolve in the atmosphere

to diagnose persistent SOA model bias.

Recent studies have shown that warm season SOA mass

concentrations are usually greater than primary organic

aerosol (POA) mass in the Los Angeles (Docherty et al.,

2008; Hersey et al., 2011; Hayes et al., 2013) and Bakers-

field (Liu et al., 2012) areas. Gas-to-particle condensation

of VOC oxidation products dominates formation of summer

SOA in Bakersfield (Liu et al., 2012; Zhao et al., 2013) and

up to one-third of nighttime organic aerosols (OA) in Bak-

ersfield are organic nitrates (Rollins et al., 2012). Sources

of warm season OA in Bakersfield include fossil fuel com-

bustion, vegetative detritus, petroleum operations, biogenic

emissions, and cooking (Liu et al., 2012; Zhao et al., 2013).

Despite numerous studies based on observations and mod-

els, less consensus exists regarding the largest sources of

warm season SOA at Pasadena. Bahreini et al. (2012) con-

cluded that SOA at Pasadena is largely derived from gaso-

line engines with minimal biogenic and diesel fuel contribu-

tion (Bahreini et al., 2012). Others concluded large contribu-

tions from gasoline fuel combustion to SOA but also found

notable contributions from diesel fuel combustion, cooking,

and other sources (Gentner et al., 2012; Hayes et al., 2013).

Zotter at al. (2014) conclude that 70 % of the SOA in the ur-

ban plume in Pasadena is due to fossil sources and that at

least 25 % of the non-fossil carbon is due to cooking sources.

Lower volatility VOC measurements made at Pasadena have

been estimated to produce approximately 30 % of fresh SOA

in the afternoon with a large contribution to these low volatil-

ity VOC from petroleum sources other than on-road vehicles

(Zhao et al., 2014).

Chemical measurements of PM2.5 carbon, fossil and con-

temporary aerosol carbon fraction, OC and its components,

SOC tracers, and speciated VOCs taken as part of the 2010

California Research at the Nexus of Air Quality and Climate

Change (CalNex) field study in central and southern Califor-

nia (Ryerson et al., 2013) provide a unique opportunity to

quantitatively evaluate modeled organic predictions. These

special study data combined with routine PM2.5 OC mea-

surements in California are compared with model estimates

to gauge how well the modeling system captures the gas and

aerosol carbon burden using the standard CMAQ aerosol ap-

proach. The SOC mechanism in the base version of CMAQ

lends itself well to comparison with chemical tracers because

it retains chemical identity traceable to the precursor VOC

(Carlton et al., 2010). Finally, a CMAQ sensitivity simula-

tion was performed in which the yields of semivolatile gases

from VOC oxidation were increased by a factor of 4 (Zhang

et al., 2014b) to determine whether this may ameliorate the

model underprediction of secondary organic carbon (SOC)

seen here and in other studies (Ensberg et al., 2014).

2 Methods

Predictions of speciated VOC, speciated SOC, and aerosol-

phase carbon are simultaneously compared to co-located am-

bient measurements at two surface locations, one in Los An-

geles County (Pasadena) and one in the San Joaquin Valley

(Bakersfield) air basin. The CMAQ photochemical model is

applied with a fine grid resolution (4 km sized grid cells) us-

ing emissions from the 2011 National Emissions Inventory

and 2010 specific point source information where available.
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2.1 Model background

CMAQ version 5.0.2 (www.cmaq-model.org) was applied to

estimate air quality in California from 5 May to 1 July 2010,

coincident with the CalNex study. Gas-phase chemistry

is simulated with the SAPRC07TB condensed mechanism

(Hutzell et al., 2012) and aqueous-phase chemistry that ox-

idizes sulfur, methylglyoxal (MGLY), and glyoxal (Carl-

ton et al., 2008; Sarwar et al., 2013). The AERO6 aerosol

chemistry module includes ISORROPIAII (Fountoukis and

Nenes, 2007) inorganic chemistry and partitioning. The mod-

eling system generally does well capturing ambient inorganic

gases and PM2.5 species during this time period at Pasadena

and Bakersfield (Kelly et al., 2014; Markovic et al., 2014).

Model-predicted OC species are shown in Fig. 1 by

volatility bin (log of C∗) and O : C ratio (see Supplement for

related details). Aqueous-phase species are shown with blue

circles, species largely fossil in origin are colored brown, and

those non-fossil in origin are green. A general trend of in-

creasing O : C ratio as volatility decreases is consistent with

laboratory and field measurements (Jimenez et al., 2009).

The placement of the MGLY geminal diol vertically above

gas-phase MGLY in Fig. 1 represents hydration processes.

Aqueous-phase organic chemistry represents multiple pro-

cesses, including functionalization and oligomerization, be-

cause some photooxidation products are small carboxylic

acids and others are high molecular weight species (Tan et

al., 2010; Carlton et al., 2007).

VOC precursors for SOA include isoprene, monoter-

penes, sesquiterpenes, xylenes, toluene, benzene, alkanes,

glyoxal, and methylglyoxal (Fig. 1 right panel). Benzene,

toluene, and xylene form SOA precursors with high-NOx
(RO2+NO) and low-NOx (RO2+HO2) specific yields

(Carlton et al., 2010). CMAQ converts these precursors into

multiple semivolatile products (Fig. 1 middle panel) after a

single oxidation step. These multiple products vary in terms

of assigned volatility and oxygen-to-carbon (O : C) ratio.

When semivolatile SOA mass oligomerizes in CMAQ the

SOA identity is lost and becomes classified only as anthro-

pogenic or biogenic, dependent on the VOC precursor (see

Fig. S2 in the Supplement). After oligomerization, the satu-

ration vapor pressure (C∗) and OM : OC ratio associated with

all of the two-product semivolatile SOA species change from

the individual values to the values assigned for non-volatile,

non-partitioning SOA mass (C∗≈ 0; OM : OC= 2.1) (Carl-

ton et al., 2010).

CMAQ VOCs and SOC species are paired in time and

space with measurements (Table S2 in the Supplement).

Modeled predictions are averaged temporally to match ob-

servations and extracted from the grid cell where the mon-

itor is located. Modeled toluene and xylene SOC are ag-

gregated to match the measured SOC tracer (2,3-dihydroxy-

4-oxopentanoic acid) which is known to represent prod-

ucts from both compounds and potentially other methylated

aromatics (Kleindienst et al., 2004). Because the original

VOCs contributing to oligomerized species are not tracked

by CMAQ, biogenic oligomerized species mass is appor-

tioned to parent VOC based on the fraction each semivolatile

SOC species contributes to the total semivolatile (non-

oligomerized) biogenic SOC at that time and location. The

same technique is applied to anthropogenic SOC.

2.2 Model application

The model domain covers the state of California and part of

northwest Mexico using 4 km square sized grid cells (Fig. S1

in the Supplement). The vertical domain extends to 50 mb

using 34 layers (layer 1 top ∼ 35 m) with most resolution

in the boundary layer. Initial and boundary conditions are

from a coarser CMAQ simulation that used 3-hourly bound-

ary inflow from a GEOS-Chem (v8-03-02) global model

(http://acmg.seas.harvard.edu/geos/) simulation for the same

period (Henderson et al., 2014). The coarser continental

US CMAQ simulation was run continuously from Decem-

ber 2009 through this study period and the first week of the

finer 4 km CMAQ simulation was not used to minimize the

influence of initial chemical conditions. Gridded meteorolog-

ical variables are generated using the Weather Research and

Forecasting model (WRF), Advanced Research WRF core

(ARW) version 3.1 (Skamarock et al., 2008). Surface mete-

orology including temperature, wind speed, and wind direc-

tion and daytime mixing layer height were well characterized

by WRF in central and southern California during this period

(Baker et al., 2013).

Emissions are processed to hourly gridded input for

CMAQ with the Sparse Matrix Operator Kernel Emis-

sions (SMOKE) modeling system (http://www.cmascenter.

org/smoke/). Solar radiation and temperature estimated by

the WRF model are used as input to the Biogenic Emis-

sion Inventory System (BEIS) v3.14 to generate hourly emis-

sions estimates of biogenic speciated VOC and NO (Carl-

ton and Baker, 2011). Continuous emissions monitor data

are used in the modeling to reflect 2010 emissions informa-

tion for electrical generating units and other point sources

that provide that information. Day-specific fires are repre-

sented but minimally impacted air quality during this pe-

riod (Hayes et al., 2013). Mobile source emissions were

generated using the SMOKE-MOVES integration approach

(United States Environmental Protection Agency, 2014) and

then interpolated between totals provided by the Califor-

nia Air Resources Board for 2007 and 2011. Other anthro-

pogenic emissions are based on the 2011 National Emissions

Inventory (NEI) version 1 (US Environmental Protection

Agency, 2014). Primary mass associated with carbon (non-

carbon organic mass) is estimated based on sector-specific

organic matter-to-organic carbon (OM : OC) ratios (Simon

and Bhave, 2012).

Emissions of primarily emitted PM2.5 OC and the sum

of anthropogenic SOA precursors benzene, toluene, and

xylenes (BTX) are shown in Table 1 by source sector and

www.atmos-chem-phys.net/15/5243/2015/ Atmos. Chem. Phys., 15, 5243–5258, 2015
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Figure 1. Gas (right panel), semivolatile (middle panel), and particle-phase (left panel) CMAQ organic carbon shown by saturation vapor

pressure and O : C ratio. Compounds shown in blue exist in the aqueous phase, those in brown are generally fossil in origin, those in green

are generally contemporary in origin, and those in gray both contemporary and fossil in origin. Other known processes such as fragmentation

are not shown as they are not currently represented in the modeling system.

Table 1. Episode total anthropogenic emissions of primarily emitted PM2.5 organic carbon and the sum of benzene, toluene, and xylenes by

emission sector group. The Los Angeles (LA) total includes Los Angeles and Orange counties. The southern San Joaquin Valley (SSJV) total

includes Kern, Fresno, Kings, and Tulare counties. Residential wood combustion, fugitives, and non-point area PM2.5 emissions are largely

contemporary in origin.

Primarily emitted PM2.5 organic carbon Benzene+ toluene+ xylenes

Sector SSJV (tons) SSJV (%) LA (tons) LA (%) SSJV (tons) SSJV (%) LA (tons) LA (%)

Non-point area 139.9 33.8 410.1 40.8 326.7 37.2 1229.3 35.8

On-road mobile 73.3 17.7 263.6 26.2 273.5 31.2 1190.9 34.6

Non-road mobile 23.9 5.8 161.4 16.1 170.1 19.4 822.3 23.9

Point: non-electrical generating 61.3 14.8 56.3 5.6 68.3 7.8 177.7 5.2

Point: non-electrical generating 54.1 13.1 82.7 8.2 2.0 0.2 3.2 0.1

Oil and gas exploration and related 28.5 6.9 0.0 0.0 34.2 3.9 1.1 0.0

Fugitive dust 24.9 6.0 18.1 1.8 0.0 0.0 0.0 0.0

Commercial marine and rail 3.8 0.9 11.4 1.1 2.6 0.3 12.8 0.4

Point: electrical generating 4.3 1.0 1.7 0.2 0.1 0.0 1.0 0.0

Total contemporary carbon 218.9 52.9 510.9 50.8 2.0 0.2 3.2 0.1

Total fossil carbon 195.2 47.1 494.5 49.2 875.3 99.8 3435.1 99.9

Total 414.1 1005.3 877.4 3438.3

area. Here, the southern San Joaquin Valley includes emis-

sions from Kern, Tulare, Kings, and Fresno counties, and the

Los Angeles area includes emissions from Los Angeles and

Orange counties. BTX emissions in both areas are dominated

by mobile sources (on-road and off-road) and area sources

such as solvent utilization and waste disposal (Table S1). Pri-

mary OC emissions are largely commercial cooking (non-

point area) in both locations with notable contributions from

various types of stationary point and mobile sources. BTX

emissions are almost completely fossil in origin and primar-

ily emitted OC is split fairly evenly between contemporary

and fossil origin in these areas based on the 2011 version 1

NEI (Table 1).

2.3 Sampling and analysis methods

CalNex ground-based measurements took place in Pasadena,

CA, from 15 May to 15 June 2010 and in Bakersfield, CA,

from 15 May to 30 June 2010. The Bakersfield sampling site

was located in a transition area of southeast Bakersfield be-

tween the city center and areas of agricultural activity. The

Pasadena sampling site was located on the California Insti-

tute of Technology campus with the Los Angeles metropoli-

tan area to the southwest and San Gabriel Mountains directly

north (see Fig. S3).

An ambient-based approach is used here to estimate sec-

ondary OC from individual or groups of similar hydrocar-

bons (Kleindienst et al., 2010). Concentrations of specific

compounds, tracers, are determined and used to estimate
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SOC contributions from the particular source groups based

on measured laboratory tracer-to-SOC mass fractions (Klein-

dienst et al., 2007). Filter-based particulate matter sampling

conducted at each site for 23 h periods starting at midnight

(PDT) on the designated sampling day was used for tracer-

based organic aerosol characterization. In total, there were

32 filter samples from Pasadena and 36 from the Bakers-

field site (Lewandowski et al., 2013). The filter sampling

protocols have been described in detail elsewhere (Kleindi-

enst et al., 2010). For the analysis of the SOC tracer com-

pounds, filters and field blanks were treated using the deriva-

tization method described by Kleindienst et al. (2007). The

mass spectral analysis for the organic compounds used as

secondary molecular tracers has been described (Edney et al.,

2003). The method detection limit (MDL) for the SOC tracer

species is 0.1 ng m−3. Additional details of this methodology

are provided in the Supplement.

OC and elemental carbon (EC) concentrations were de-

termined using the thermal–optical transmittance (TOT)

method (Birch and Cary, 1996) from 1.54 cm2 punches of

quartz filters collected concurrent with the filters used for

tracer analyses (hereafter referred to as UNC/EPA OC). The

outer non-loaded rings were removed from filter samples and

then sent to Woods Hole Oceanographic Institute Accelerator

Mass Spectrometry for 14C analysis. The fraction of modern

carbon is provided for each daily total PM2.5 carbon sample

(Geron, 2009). The modern carbon fraction is expressed as a

percentage of an oxalic acid standard material that represents

the carbon isotopic ratio for wood growth during 1890 (Stu-

iver, 1983). To account for the atmospheric 14C enhancement

due to nuclear bomb testing in the 1950s and 1960s, a factor

of 1.044 (Zotter et al., 2014) was used to calculate the con-

temporary carbon fraction from the measured modern carbon

result (Lewis et al., 2004; Zotter et al., 2014).

Two VOC data sets (one canister based and one in situ)

from each site were used in this analysis. Three-hour inte-

grated (06:00–09:00 PDT) canister samples for VOC anal-

ysis were collected at both sites. A total of 41 samples

were collected at the Bakersfield site and 31 at Pasadena.

The offline VOC analysis details are given in the Sup-

plement. In Bakersfield, online VOC mixing ratios were

collected for 30 min on the hour and analyzed via gas

chromatography–flame ionization detector (GC-FID) and

gas chromatography–mass spectrometry (GC-MS) (Gentner

et al., 2012). In Pasadena, online VOC measurements were

collected for 5 min every 30 min and analyzed via GC-MS

(Borbon et al., 2013; Gilman et al., 2010). Carbon monoxide

measurements at Pasadena were determined using UV fluo-

rescence (Gerbig et al., 1999).

Hydroxyl (OH) and hydroperoxyl (HO2) radical measure-

ments were made at both locations using fluorescence assay

with gas expansion (FAGE). The Bakersfield OH measure-

ments used in this analysis were collected using the OHchem

method from the Penn State ground-based FAGE instrument

(Mao et al., 2012). The Pasadena hydroperoxyl observations

were made using the Indiana University FAGE instrument

(Dusanter et al., 2009). HO2 measurements from both instru-

ments could contain an interference from various RO2; there-

fore, when comparing the model output with the observations

the sum of modeled HO2 and RO2 has been used (Griffith et

al., 2013).

OC measurements from nearby Chemical Speciation Net-

work (CSN) sites in Pasadena and Bakersfield were also

used for comparison purposes. The Los Angeles CSN site

(60371103) was approximately 14 km from the CalNex site,

and the Bakersfield CSN site (60290014) was approximately

5 km from the CalNex site (see Fig. S3a and b in the Sup-

plement). The CSN network uses quartz-fiber filters and

analyzes the carbon offline using the thermal–optical re-

flectance (TOR) method. Aerodyne high-resolution time-

of-flight aerosol mass spectrometer (AMS) measurements

of PM1 OC made at Pasadena are described in Hayes et

al. (2013) and online Sunset Lab Inc. PM2.5 OC measure-

ments made at Bakersfield are described in Liu et al. (2012).

3 Results and discussion

The results and discussion are organized such that the con-

temporary and fossil components of PM2.5 carbon at the

Pasadena and Bakersfield sites are discussed, followed by

model performance for PM2.5 carbon, speciated VOC, and

SOC tracer groups. Table 2 shows episode-aggregated model

performance metrics for PM2.5 organic and elemental car-

bon, SOC tracers, total VOC, and select VOC species. The

results of a sensitivity increasing semivolatile yields are pre-

sented throughout and discussed in detail before finally pro-

viding an evaluation of PM2.5 carbon at all routine monitor

sites in California.

3.1 Contemporary and fossil origins of PM2.5 carbon

Field campaign average total PM2.5 carbon measurements in-

dicate nearly equal amounts of contemporary and fossil con-

tribution at Pasadena and Bakersfield. The field study aver-

age contemporary fraction of 23 h average PM2.5 total carbon

samples is 0.51 at Bakersfield (N = 35) and 0.48 at Pasadena

(N = 25). The estimate for contemporary carbon fraction at

Pasadena is consistent with other 14C measurements at this

location for this period (Zotter et al., 2014) and similar to

measurements made at urban areas in the southeast USA:

52 % contemporary carbon in Birmingham and 63 % in At-

lanta (Kleindienst et al., 2010).

Figure 2 shows observed daily 23 h PM2.5 OC shaded by

contemporary and fossil component as well as PM2.5 ele-

mental carbon. The fractional contribution of contemporary

carbon to total PM2.5 carbon is variable from day-to-day at

the Pasadena site and steadily increases through the study

period at the Bakersfield location (first week average of 0.44

and final week average of 0.58). Some of the contemporary

www.atmos-chem-phys.net/15/5243/2015/ Atmos. Chem. Phys., 15, 5243–5258, 2015
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Table 2. Episode average measured and modeled PM2.5 carbon, PM2.5 SOC groups, and VOC at the Pasadena and Bakersfield sites.

Species Model Location N Observed Predicted Bias Error Fractional Fractional r

run (µgC m−3) (µgC m−3) (µgC m−3) (µgC m−3) bias (%) error (%)

Elemental carbon Baseline Bakersfield 35 0.5 0.4 −0.1 0.1 −13 35 0.17

Baseline Pasadena 31 0.2 1.0 0.8 0.8 125 125 0.70

Baseline CSN/IMPROVE sites 220 0.2 0.6 0.6 0.6 77 87 0.47

Organic carbon Baseline Bakersfield 35 5.4 0.8 −4.6 4.6 −144 144 0.11

Baseline Pasadena 31 3.6 2.0 −1.6 1.6 −53 53 0.73

Baseline CSN/IMPROVE sites 220 1.9 1.3 −0.6 0.9 −34 53 0.06

Sensitivity CSN/IMPROVE sites 220 1.9 1.7 −0.2 0.8 −11 42 0.32

Species Model Location N Observed Predicted Bias Error Fractional Fractional r

run (ngC m−3) (ngC m−3) (ngC m−3) (ngC m−3) bias (%) error (%)

Isoprene SOC Baseline Bakersfield 36 96 21 −75 75 −126 128 0.36

Pasadena 32 42 27 −15 25 −60 83 0.10

Monoterpene SOC Baseline Bakersfield 35 56 21 −35 37 −75 89 0.66

Pasadena 32 82 21 −60 61 −89 93 0.55

Toluene+ xylene SOC Baseline Bakersfield 35 59 15 −44 44 −114 114 0.62

Pasadena 32 125 36 −89 89 −100 100 0.82

Sesquiterpene SOC Baseline Bakersfield 41 17

Pasadena 41 7

Benzene SOC Baseline Bakersfield 41 2

Pasadena 41 2

Alkane SOC Baseline Bakersfield 41 12

Pasadena 41 22

Cloud SOC Baseline Bakersfield 41 1

Pasadena 41 5

Naphthalene SOC Baseline Bakersfield 36 43

Pasadena 32 114

Species Model Location N Observed Predicted Bias Error Fractional Fractional r

run (ppbC) (ppbC) (ppbC) (ppbC) bias (%) error (%)

Isoprene VOC 3 h Baseline Bakersfield 5 0.1 0.3 0.2 0.2 79 79 0.79

Pasadena 8 0.6 0.5 −0.2 0.5 0 84 −0.21

Monoterpene VOC 3 h Baseline Bakersfield 37 1.4 0.5 −0.9 1.0 −72 89 0.25

Pasadena 28 1.8 0.3 −1.5 1.6 −129 137 0.15

Toluene VOC 3 h Baseline Bakersfield 41 4.3 2.7 −1.6 1.9 −48 55 0.44

Pasadena 29 7.3 7.7 0.4 3.5 17 44 0.24

Xylene VOC 3 h Baseline Bakersfield 41 4.3 1.8 −2.5 2.5 −82 83 0.34

Pasadena 29 6.7 4.5 −2.1 2.6 −33 41 0.20

Benzene VOC 3 h Baseline Bakersfield 41 1.2 1.3 0.2 0.5 6 38 0.14

Pasadena 29 1.5 1.6 0.1 0.5 0 30 0.16

Total VOC 3 h Baseline Bakersfield 41 186.9 63.7 −123.2 124.2 −95 97 0.37

Pasadena 29 188.9 88.7 −100.1 100.1 −66 66 0.26

Isoprene VOC 1 h Baseline Bakersfield 712 0.4 0.4 0.0 0.3 −21 83 0.15

Pasadena 718 1.6 0.8 −0.9 1.7 −32 139 −0.10

Monoterpene VOC 1 h Baseline Bakersfield 605 0.8 0.3 −0.6 0.7 −63 101 0.25

Pasadena 707 0.7 0.2 −0.5 0.5 −105 111 0.05

Toluene VOC 1 h Baseline Bakersfield 737 2.5 1.7 −0.8 1.5 −25 56 0.31

Pasadena 717 4.0 6.1 2.0 2.8 36 54 0.23

Xylene VOC 1 h Baseline Bakersfield 737 1.9 1.1 −0.7 1.2 −37 64 0.32

Pasadena 718 3.2 3.4 0.2 1.7 2 51 0.15

carbon fraction measurements from Pasadena were above

1.0. These samples were considered erroneous and not in-

cluded in the analysis and suggest the possibility of positive

biases due to nearby sources (e.g., medical incinerator) in the

area. It is possible some of the stronger day-to-day variability

in contemporary carbon fraction measurements at Pasadena

may be related to biases due to nearby “hot” sources. Higher

time resolution 14C measurements at Pasadena show an in-

crease in fossil fraction during the middle of the day related

to increased emissions of fossil PM2.5 carbon precursors and

SOA formation in the Los Angeles area (Zotter et al., 2014).

PM2.5 OC of fossil origin at Pasadena shows the strongest re-

lationship to daily average temperature (Fig. S4a) compared

with contemporary carbon, total carbon, and elemental car-

bon. At Bakersfield the relationship between daily average

temperature and fossil and contemporary carbon is similar

(Fig. S4b) and not as strong as the relationship in Pasadena.

Neither fossil nor contemporary carbon concentrations show

discernible patterns by day of the week at either location

(Fig. S5).

Modeled contemporary PM2.5 carbon is estimated by sum-

ming primarily emitted PM2.5 multiplied by the contempo-

Atmos. Chem. Phys., 15, 5243–5258, 2015 www.atmos-chem-phys.net/15/5243/2015/



K. R. Baker et al.: Gas and aerosol carbon in California 5249

05/13 05/18 05/23 05/28 06/02 06/07 06/12 06/17
0

2

4

6

8

10

12

14

C
o
n
ce

n
tr

a
ti

o
n
 (
µ
g
C

/m
3

)

Pasadena

05/18 05/23 05/28 06/02 06/07 06/12 06/17 06/22 06/27

Month/Day of Episode

0

2

4

6

8

10

12

14

C
o
n
ce

n
tr

a
ti

o
n
 (
µ
g
C

/m
3

)

Bakersfield
Observed PM2.5 Contemporary Organic Carbon

Observed PM2.5 Fossil Organic Carbon

Observed PM2.5 Elemental Carbon

Contemporary PM2.5 Total Carbon Fraction

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n
te

m
p
o
ra

ry
 F

ra
ct

io
n

0.0

0.2

0.4

0.6

0.8

1.0

C
o
n
te

m
p
o
ra

ry
 F

ra
ct

io
n

Figure 2. Observed daily 23 h average PM2.5 elemental carbon,

PM2.5 contemporary-origin organic carbon, and PM2.5 fossil-origin

organic carbon at Pasadena and Bakersfield.

rary fraction of urban area emissions (see Sect. 2.1 and Ta-

ble 1) with model-estimated biogenic SOC species. The av-

erage baseline modeled contemporary fraction of PM2.5 OC

in Pasadena is 0.51 and Bakersfield 0.54, both of which are

similar to average observation estimates. However, the model

shows little day-to-day variability in contemporary carbon

fraction, which does not match observed trends (Fig. S6).

Episode average modeled estimates of PM2.5 OC contempo-

rary fraction are similar to the estimated contemporary frac-

tion of the urban emissions of primary PM2.5 OC (Bakers-

field= 0.53 and Pasadena= 0.51), as noted in Table 1.

3.2 PM2.5 carbon

Figure 3 shows measured (UNC/EPA data) and modeled

PM2.5 OC at Bakersfield and Pasadena. Organic carbon mea-

surements from co-located instruments (AMS at Pasadena

measured PM1 and Sunset at Bakersfield measured PM2.5)

and the nearest CSN monitor are also shown in Fig. 3.

The co-located AMS measurements compare well with the

UNC/EPA PM2.5 organic carbon measurements at Pasadena,

while the concentrations measured at the nearby CSN site

are substantially lower. At Bakersfield, UNC/EPA measure-

ments are higher compared with the nearby CSN (episode av-

erage ∼ 3 times higher), and co-located daily average Sunset

(episode average 20 % higher) measured PM2.5 OC illustrate

possible measurement artifacts in the UNC/EPA measure-

ments at this location. These differences in measured concen-

tration at Bakersfield may be related to filter handling, vari-

ability in collected blanks, true differences in the OC concen-

trations since the CSN site is spatially distinct, differences in

the height of measurement (these CSN monitors are situated

on top of buildings), and differences in analytical methods

since CSN sites use TOR to operationally define OC and EC.
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Figure 3. Model-predicted and measured PM2.5 organic carbon at

Pasadena and Bakersfield. The nearby CSN measurements are in-

tended to provide additional context and are not co-located with

CalNex measurements or model estimates.

Modeled PM2.5 OC is underestimated at both CalNex

locations (Fig. 3), most notably at Bakersfield. However,

given the large differences in PM2.5 OC mass compared

to co-located and nearby routine measurements, it is not

clear which measurement best represents ambient PM2.5

OC concentrations and would be most appropriate for com-

parison with the model. The model generally compares

well to the CSN site nearest Pasadena and Bakersfield.

PM2.5 elemental carbon is well characterized by the model

at Bakersfield (fractional bias=−13 % and fractional er-

ror= 35 %) and overestimated at Pasadena (fractional bias

and error= 125 %) (Fig. S7). Since the emissions are based

on TOR and UNC/EPA measurements use the TOT opera-

tional definition of total carbon, some of the model overesti-

mation may be related to the TOR method estimating higher

elemental carbon fraction of total carbon (Chow et al., 2001).

PM2.5 OC is mostly primary (Pasadena 93 % and Bakers-

field 88 %) in the baseline model simulation. AMS measure-

ments at Pasadena suggest OC is mostly secondary in nature

with an average of 63 % for the semi-volatile oxidized or-

ganic aerosol and oxygenated organic aerosol components

for this field study (Hayes et al., 2013). Model-estimated

PM2.5 OC is largely from primarily emitted sources and con-

temporary in nature based on the contemporary/fossil split of

primary PM2.5 emissions near both sites (Fig. S6). Primar-

ily emitted PM2.5 OC emissions sources near Pasadena and

Bakersfield include mobile sources, cooking, and dust based

on emissions inventory information (Table 1). Some of these

sources of primarily emitted PM2.5 OC may be semivolatile

in nature. Model treatment of POA as semivolatile may im-

prove the primary–secondary comparison with observations

but would likely exacerbate underpredictions of PM2.5 OC

www.atmos-chem-phys.net/15/5243/2015/ Atmos. Chem. Phys., 15, 5243–5258, 2015
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Figure 4. Observed (top row) and modeled (middle and bottom rows) PM2.5 organic carbon at Pasadena and Bakersfield. Mass explained by

SOA tracers shown in green (contemporary-origin tracers) and brown (fossil-origin tracers). Top row tan shading indicates mass not explained

by known observed SOC tracers. Middle and bottom row gray shading shows modeled primarily emitted PM2.5 that is both contemporary

and fossil in origin. Middle row shows baseline model estimates and bottom row model sensitivity results with increased SOA yields.

unless oxidation and re-partitioning of the products is con-

sidered (Robinson et al., 2007). The underestimation of SOC

may result from underestimated precursor VOC, poorly char-

acterized oxidants, underestimated semivolatile yields, miss-

ing intermediate volatility VOC emissions (Stroud et al.,

2014; Zhao et al., 2014), other issues, or some combination

of each.

3.3 Gas-phase carbon

Model estimates are paired with hourly VOCs (Fig. S8) and

mid-morning 3 h average VOC (Fig. S9) at both locations.

Compounds considered largely fossil in origin including xy-

lene, toluene, and benzene are generally well predicted at

both sites although these species tend to be slightly over-

estimated at Pasadena and slightly underestimated at Bak-

ersfield. Since emissions of these compounds near these sites

are largely from mobile sources (Table 1), this suggests emis-

sions from this sector are fairly well characterized in this ap-

plication.

Contemporary (biogenic)-origin monoterpenes are under-

estimated at both sites while isoprene is underestimated at

Pasadena and has little bias at Bakersfield based on hourly

measurements (Fig. S8; Table 2). Isoprene and monoterpene

performance may be partly related to the model not fully cap-

turing transport from nearby areas with large emitting veg-

etation to these monitor locations (Heo et al., 2015), defi-

ciencies in emissions factors, or poorly characterized vegeta-

tion. Speciated monoterpene measurements made at Bakers-

field during this field campaign suggest emissions of certain

species were elevated at the start of this time period due to

flowering (Gentner et al., 2014b), which is a process not in-

cluded in current biogenic emissions models and thus may

contribute to modeled monoterpene underestimates.

Other VOC species that are systematically underestimated

include ethane, methanol, ethanol, and acetaldehyde. Un-

derprediction of methanol and ethanol in Bakersfield may

be largely related to missing VOC emissions for confined

animal operations in the emission inventory (Gentner et

al., 2014a). Underestimates of oxygenated VOC compounds

may indirectly impact SOC formation through muted photo-

chemistry (Steiner et al., 2008). Carbon monoxide tends to

be underestimated at both locations (Fig. S8) possibly due to

boundary inflow concentrations from the global model simu-

lation being too low or underestimated regional emissions.
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Figure 5. Comparison of CMAQ-predicted and measured VOC

(daily average of hourly samples) and corresponding SOC species

(daily 23 h average samples) for Pasadena. Comparison points out-

side the gray lines indicate model predictions are greater than a fac-

tor of 2 different from the measurements.

3.4 PM2.5 SOC tracers

Figure 4 shows modeled and measured total PM2.5 OC mass.

Measured mass explained by fossil and contemporary SOC

tracers are shown in the top row. The unexplained observed

fraction is a mixture of primary, secondary, fossil, and con-

temporary origin. Modeled mass is colored to differentiate

primarily emitted OC and SOC. Estimates of SOC mass from

a specific or lumped VOC group (e.g., isoprene, monoter-

penes, toluene), hereafter called SOC tracer mass, comprise

little of the measured or modeled PM2.5 OC at either of these

locations during this field study (Fig. 4). Total SOC tracer

estimates explain only 9 % of the total measured UNC/EPA

PM2.5 OC at Pasadena and 5 % at Bakersfield. The percent-

age of mass explained by known secondary tracers is smaller

than urban areas in the southeast USA: 27 % in Atlanta and

31 % in Birmingham (Kleindienst et al., 2010).

The portion of measured and modeled PM2.5 carbon

not identified with tracers may be from underestimated

adjustment factors related to previously uncharacterized

semivolatile VOC (SVOC) wall loss in chamber studies

(Zhang et al., 2014b) and unidentified SOC pathways. Ad-

ditional reasons for the low estimate of observed tracer con-

tribution to PM2.5 carbon include known pathways without

an ambient tracer and tracer degradation between formation

and measurement. Based on 14C measurements, this uniden-

tified portion of the measurements is likely comprised of both

contemporary and fossil carbon in generally similar amounts.

Total modeled SOC explains only 12 % of the PM2.5 car-

bon at Bakersfield and 7 % at Pasadena. As noted previously,

AMS-based observations suggest most OC is SOC (63 %) at

Pasadena (Hayes et al., 2013), meaning both the SOC tracer

measurements and model estimates explain little of the SOC

at this location.

Despite the relatively small component of PM2.5 carbon

explained by SOC tracers, a comparison of measured and

modeled SOC and precursor VOC provides additional op-

portunity to better understand sources of PM2.5 carbon in

these areas and begin to establish relationships between pre-

cursors and resulting SOC formation. Ambient and model-

estimated SOC tracers and daily average VOC precursors

are shown in Fig. 5 for Pasadena and Fig. 6 for Bakersfield.

The model underestimates toluene and xylene SOC at both

locations even though VOC gas precursors show an over-

prediction tendency at Pasadena and only a slight underes-

timation at Bakersfield. Isoprene SOC is generally under-

predicted at both sites, in particular at Bakersfield. This is

in contrast to the slight overprediction of daily 24 h aver-

age isoprene at Bakersfield. One explanation may be that

isoprene SOC is formed elsewhere in the region (e.g., the

nearby foothills of the Sierra Nevada where emissions are

highest in the region), which would support the lack of rela-

tionship between isoprene SOC and isoprene concentrations

at Bakersfield (Heo et al., 2015; Shilling et al., 2013). The

lack of relationship could also be related to the reactive up-

take kinetics of isoprene-derived epoxydiols (IEPOX) (Gas-

ton et al., 2014) and methacrylic acid epoxide (MAE). Since

the model does not include the reactive uptake of IEPOX and

MAE and subsequent acid-catalyzed aqueous-phase chem-

istry, it is likely isoprene SOC would be underestimated to

some degree at both sites (Karambelas et al., 2013; Pye et

al., 2013). Of these channels the IEPOX channel is thought

to have the largest SOA production potential, but the chem-

istry in the LA basin is dominated by the high-NO channel

(Hayes et al., 2014) and thus IEPOX is not formed from iso-

prene emitted within the LA basin. Consistent with that ob-

servation, the AMS tracer of IEPOX SOA is only detected at

background level in the LA basin.

Monoterpene VOC and monoterpene SOC are underesti-

mated systematically at both locations, suggesting underpre-

dictions of the VOC precursor translates to underestimates

in SOC. As noted previously, monoterpene measurements

suggest an emissions enhancement related to flowering or

other emission events (e.g., harvest or pruning) (Gentner et

al., 2014b) that is not included in current biogenic emis-

sions model formulations. The monoterpene-measured tracer

SOC group is based on α-pinene products. Measured SOC

at these sites could be from monoterpene species other than

α-pinene. A coincident study near Bakersfield indicates α-

and β-pinene emissions represent a fairly small fraction of

total monoterpene emissions during this time period (Gen-

tner et al., 2014b). SOA yields in CMAQ for monoterpenes

are heavily weighted toward α- and β-pinene, which may be

appropriate in most places but not here where measurements

show large contributions from limonene, myrcene, and para-

cymene. This is important because yields vary among from

different monoterpenes and limonene has a much larger SOA

yield than pinenes (Carlton et al., 2010).
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Figure 6. Comparison of CMAQ-predicted and measured VOC

(daily average of hourly samples) and corresponding SOC species

(daily 23 h average samples) for Bakersfield. Comparison points

outside the gray lines indicate model predictions are greater than

a factor of 2 different from the measurements.

Sesquiterpene VOC and SOC tracer (β-caryophyllenic

acid) mass measurements were never above the MDL at ei-

ther site during CalNex, but the modeling system often pre-

dicts SOC from this VOC group (Table 2, Fig. S10b). The

SOC tracer measurement methodology is more uncertain

for sesquiterpene products (Offenberg et al., 2009) and gas-

phase sesquiterpenes would have oxidized before reaching

the measurement sites since sesquiterpene-emitting vegeta-

tion exists in the San Joaquin Valley (Ormeño et al., 2010).

It is also possible that SOC is forming from sesquiterpenes

other than β-caryophyllene.

One potential explanation for an underestimation of

SOC despite well-characterized precursors (e.g., toluene and

xylenes) could be the lack of available oxidants. As shown

in Fig. 7, the model tends to overestimate the hydroxyl

radical compared with measurement estimates at Pasadena.

Hydroperoxyl+ peroxy radical measurements are underes-

timated at Pasadena by a factor of 2 on average. The

model overestimates preliminary measurements of both hy-

droxyl (by nearly a factor of 2 on average) and hydroper-

oxyl+ peroxy radicals at Bakersfield. Model representation

of hydroxyl radical at these locations during this time period

does not seem to be limiting VOC oxidation to semivolatile

products. Better agreement between radical ambient and

modeled estimates could result in less SOC produced by the

model and exacerbate model SOC underestimates. This sug-

gests deficiencies other than radical representation by the

modeling system are more influential in SOC performance

for these areas. However, hydroperoxyl underestimates at

Pasadena could lead to muted SOA formation through low-

NOx pathways dependent on hydroperoxyl concentrations

and contribute to model underestimates of SOC.

3.5 Sensitivity simulation

OH is not underestimated in the model and biases in precur-

sor VOC do not clearly translate into similar biases in SOC

(e.g., toluene and xylene VOC are overestimated at Pasadena

but tracer SOC for this group is underestimated) for these

sites during this time period. Modeled SOC may partly be

underestimated due to the use of experimental SOC yields

that may be biased low due to chamber studies not fully ac-

counting for SVOC wall loss (Zhang et al., 2014b). Even

though Zhang et al. (2014b) showed results for one precursor

to SOA pathway, for a sensitivity study here the yield of all

semivolatile gases is increased by a factor of 4. This was done

by increasing the mass-based stoichiometric coefficients for

each VOC-to-SOA pathway in the model to provide a pre-

liminary indication about how increased yields might impact

model performance. A factor of 4 is chosen based on the up-

per limit related to SVOC wall loss in Zhang et al. (2014b).

Aside from wall loss characterization, there are a variety of

other aspects of chamber studies that could result in under-

estimated yields including particle-phase accretion, aqueous-

phase chemistry, and differences in chamber and ambient hu-

midity.

Model estimates of PM2.5 OC increase in urban areas and

regionally when semivolatile yields are increased. The sen-

sitivity simulation results in episode average anthropogenic

SOC increases between a factor of 3 (benzene SOC at

Pasadena) to 4.8 (toluene and xylene SOC at Pasadena)

and biogenic SOC increases between a factor of 5.1 (iso-

prene SOC at Pasadena) to 8.9 (monoterpene SOC at Bakers-

field). Model performance improves at the CalNex locations

(Figs. 3 and 4) and at routine monitors throughout Califor-

nia (Fig. 8). Average fractional bias improves from −34 to

−11 % at routine monitor locations and fractional error is re-

duced from 53 to 42 %.

The sensitivity simulation with increased semivolatile

yields results in increased model-estimated secondary contri-

bution as a percent of PM2.5 carbon but still does not conform

to observation-based estimates that indicate PM2.5 carbon is

largely secondary in nature at these sites (Liu et al., 2012;

Hayes et al., 2013). Modeled SOC in the sensitivity simula-

tion explains 36 % of the PM2.5 OC at Bakersfield and 22 %

at Pasadena, which is larger than the baseline simulation by

more than a factor of 3. The model-predicted percent con-

temporary fraction of PM2.5 carbon changed very little due

to this sensitivity. The model sensitivity results are not com-

pared to SOC tracer group estimates since the conversion of

tracer concentrations to SOC concentrations would require a

similar adjustment and would result in similar relationships

between model estimates and observations.

3.6 Aqueous and other SOC processes

Measurements in Pasadena during the summer of 2009 sug-

gest aqueous processes can be important for SOC mass
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Figure 7. Measured and model-estimated OH radical (top) and HO2+RO2 (bottom) at Pasadena. The ratio shown on the scatterplots is the

episode average model estimate divided by the episode average measured values.

Figure 8. Episode average modeled PM2.5 organic carbon and measurements from both CalNex locations and routine networks including

CSN (circles) and IMPROVE (squares). Left panel shows baseline model predictions and right panel shows model estimates with increased

SOA yields.

(Hersey et al., 2011). For the CalNex period at Pasadena,

other research showed box-model-estimated 8 h average

SOC from aqueous-phase chemistry of glyoxal to be be-

tween 0.0 and 0.2 µg m−3 (Washenfelder et al., 2011), and

Hayes et al. (2014) showed that the observed SOA was not

different between cloudy and clear morning days. CMAQ-

predicted 24 h average SOC from glyoxal and methylglyoxal

through aqueous chemistry at Pasadena ranges from 0.0 to

0.04 µg m−3. CMAQ estimates of SOC from small carbonyl

compounds via aqueous-phase processes are within the range

inferred from measurements.

Not all CMAQ SOC formation pathways can be in-

cluded in this analysis. No observational indicator exists for

SOC derived from alkanes, benzene, glyoxal, and methyl-

glyoxal since unique tracer species have not been deter-

mined. Conversely, naphthalene/polycyclic aromatic hydro-

carbons (PAHs) SOC tracers were measured but not mod-

eled in CMAQ. Measured naphthalene SOC at these sites is

minor (Hayes et al., 2014), which is consistent with other

areas (Dzepina et al., 2009). Previous CMAQ simulations

predict that PAHs contribute less than 30 ng m−3 of SOA

in Southern California in summer (Pye and Pouliot, 2012),

and thus including those pathways is unlikely to close the

www.atmos-chem-phys.net/15/5243/2015/ Atmos. Chem. Phys., 15, 5243–5258, 2015
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model–measurement gap in PM2.5 OC. 2-Methyl-3-buten-2-

ol (MBO) derived SOC concentrations (3–4 ngC m−3) were

low at both monitor locations throughout the campaign

(Lewandowski et al., 2013). MBO does not appear to no-

tably contribute SOC at these locations during this time pe-

riod, which is consistent with low yields estimated in labora-

tory experiments (Chan et al., 2009). Organic carbon emit-

ted from marine biological activity is not included in this

modeling assessment and may contribute to some degree at

Pasadena (Gantt et al., 2010) based on ship-based measure-

ments (Hayes et al., 2013).

3.7 Regional PM2.5 organic carbon

Including routine measurement data is important to provide

broader context for PM2.5 carbon in California and under-

stand how the model performs and responds to perturbations

at diverse locations beyond the two CalNex sites. The highest

average modeled PM2.5 OC in California during this period

is in the Los Angeles area (Fig. 8). The Sacramento and San

Joaquin valleys also show higher concentrations of PM2.5

OC than more rural parts of the state (Fig. 8). Measure-

ments made at routine monitor networks (Fig. 8) show sim-

ilar elevated concentrations near Los Angeles, Sacramento

Valley, and San Joaquin Valley. These areas of elevated OC

generally coincide with areas of the state that experience a

build-up of pollutants due to terrain features blocking air flow

(Baker et al., 2013). The model does not tend to capture the

highest concentrations of measured PM2.5 OC in the central

San Joaquin Valley, Imperial Valley, or at one CSN monitor

in the northeast Sierra Nevada that is near large residential

wood combustion emissions (Fig. S11). The model under-

estimates PM2.5 OC on average across all CSN sites during

this time period (fractional bias=−34 % and fractional er-

ror= 53 %). The modeling system shows an overprediction

tendency (fractional bias= 77 %) across all CSN sites for

PM2.5 elemental carbon in California during this period.

4 Conclusions

Total PM2.5 carbon at Pasadena and Bakersfield during the

CalNex period in May and June 2010 is fairly evenly split

between contemporary and fossil origin. Total PM2.5 OC is

generally underestimated at both field study locations and at

many routine measurement sites in California, and compari-

son with AMS observations suggests a large underestimation

of SOC. Semivolatile yields were increased by a factor of

4 based on recent research suggesting yields may be higher

due to updated accounting for SVOC wall loss. This sensitiv-

ity resulted in a better comparison to routine and field study

measurements. However, the model-estimated OC is still

largely primary in nature and inconsistent with observation-

based approaches at these sites. A modeling study for the

same time period using different emissions, photochemical

transport model, and SOA treatment also shows underesti-

mated OA and SOA at Pasadena and underestimated SOA

but comparable OA at the Bakersfield location (Fast et al.,

2014).

CMAQ predictions of individual VOCs are often not con-

sistent with model performance for the corresponding subse-

quent SOC species mass. Gas-phase mixing ratios of toluene

and xylene are well predicted by CMAQ, typically within

a factor of 2 of the observations at both sites. However,

measurement-based estimates of the corresponding SOC

mass are consistently greater than model-predicted mass.

Mass concentrations of the isoprene SOC are systematically

underpredicted, most noticeably at Bakersfield, while model

predictions of gas-phase isoprene are not biased in only one

direction to the same degree. Gas-phase monoterpenes and

the related SOC species are underpredicted at both CalNex

monitoring sites. The hydroxyl radical is fairly well charac-

terized at Pasadena and systematically overestimated at Bak-

ersfield, suggesting oxidants are not limiting SOC production

in the model.

Episode average CMAQ model estimates of PM2.5 OC

contemporary fraction at Pasadena and Bakersfield are sim-

ilar to radiocarbon measurements but lack day-to-day vari-

ability. CMAQ PM2.5 OC is predominantly primary in origin,

which is contrary to findings from other studies that indicate

PM2.5 OC in these areas are largely secondary in nature dur-

ing this time period (Bahreini et al., 2012; Hayes et al., 2013;

Liu et al., 2012). Treatment of primarily emitted PM2.5 OC

as semivolatile would likely result in total PM2.5 OC esti-

mates that would be mostly secondary rather than primary.

However, this would likely exacerbate model underestimates

of PM2.5 OC. Some model performance features, including

underestimated SOC, may be related to less volatile hydro-

carbon emissions missing from the emission inventory (Chan

et al., 2013; Gentner et al., 2012; Jathar et al., 2014; Zhao et

al., 2014) or mischaracterized when lumped into chemical

mechanism VOC species (Jathar et al., 2014). A future in-

tent is to simulate this same period using a volatility basis set

approach to treat primary OC emissions with some degree

of volatility and potential for SOC production and better ac-

count for sector-specific intermediate volatility emissions.

The Supplement related to this article is available online

at doi:10.5194/acp-15-5243-2015-supplement.
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